
MATH 830 FALL 2021: HOMEWORK 1, SOLUTIONS

You may work together on these homework problems, but each student in the class must write up the
solutions to this assignment entirely on their own. You may freely use the class notes, but please do not
consult any textbooks, the internet, graduate students not in this class, or any professor except your Math
830 instructor - who is always happy to discuss any algebra problem. You have two weeks to work on this
assignment. Please upload a pdf copy of your solutions to Blackboard no later than 10pm on September 20.

1. Let F ⊆ K be fields and suppose α ∈ K is algebraic over F and has the property that [F (α) : F ] is odd.
Prove that F (α2) = F (α).

Solution. We clearly have F ⊆ F (α2) ⊆ F (α)]. Note that α satisfies x2 − α2 over F (α2). It follows
that, [F (α) : F (α2)] ≤ 2. Since[F (α) : F ] is odd and divisible by [F (α) : F (α2)], it must hold that
[F (α) : F (α2)] = 1. That is, F (α2) = F (α).

2. Suppose F ⊆ K are fields and α, β ∈ K satisfy [F (α) : F ] = n and [F (β) : F ] = m.

(i) Show that [F (α, β) : F (α)] = m if and only if [F (α, β) : F (β)] = n.
(ii) Prove that the conditions in (i) hold if n and m are relatively prime.

Solution. For (i), we have

[F (α, β) : F ] = [F (α, β) : F (α)] · [F (α) : F ] = [F (α, β) : F (α)] · n
= [F (α, β) : F (β)] · [F (β) : F ] = [F (α, β) : F (β)] ·m.

Thus [F (α, β) : F (α)] · n = [F (α, β) : F (β)] ·m, from which the result follows.

For part (ii), from part (i) we have

[F (α, β) : F (α)] · n = [F (α, β) : F (β)] ·m.

If n and m are relatively prime, then n divides [F (α, β) : F (β)]. Since [F (α, β) : F (β)] ≤ n, we must have
n = [F (α, β) : F (β)]. It follows immediately that the conditions in (i) hold, and in fact, [F (α, β) : F ] = n ·m.

3. Let F ⊆ K be fields and L,M intermediate fields between K and F . Write LM for the intersection of all
subfields of K containing L and M . Thus, LM is the smallest subfield of K containing both L and M , and
is called the compositum of L and M .

(i) Show that LM is the set of elements E in K of the form (α1β1 + · · ·+αnβn) · (u1v1 + · · ·+ usvs)
−1,

with αi, uj ∈ L and βi, vj ∈ M , and any n, s ≥ 1.
(ii) Show that [LM : F ] < ∞ if and only [L : F ] < ∞ and [M : F ] < ∞. (Hint: For the if direction,

show that LM is the set of elements in K of the form α1β1 + · · ·+ αnβn with αi ∈ L and βi ∈ M .)
(iii) Prove that if the conditions in (ii) hold, then [LM : F ] is a common multiple of [L : F ] and [M : F ]

and is less than or equal to [L : F ] · [M : F ].
(iv) Show that if [L : F ] and [M : F ] are relatively prime, then [LM : F ] = [L : F ] · [M : F ].

Solution. For (i), since LM is a field containing L and M , every expression of the form

(α1β1 + · · ·+ αnβn) · (u1v1 + · · ·+ usvs)
−1,

with αi, uj ∈ L and βi, vj ∈ M , and any n, s ≥ 1 belongs to LM , so E ⊆ LM . Conversely, by definition, E
is a subset of K that is closed under multiplication, addition and taking inverses, and thus E is a subfield
of K. Since L and M are contained in E, it follows that E is a subfield of K containing L and M , and
therefore LM ⊆ E. Thus, E = LM , as required.

For (ii), since L,M ⊆ LM , it follows immediately that [L : F ] and [M : F ] are finite if [LM : F ] is
finite. Conversely, suppose [L : F ] and [M : F ] are finite. Let l1, . . . , lr be a basis for L over F (so that
[L : F ] = r) and m1, . . . ,mt be a basis for M over F (so that [M : F ] = t). Since every element in L is an
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F -linear combination of l1, . . . , lr and such elements are closed under addition and multiplication, and every
element in M is an F -linear combination of m1, . . . ,mt, and these elements are closed under addition and
multiplication, it follows that the set T of all F -linear combinations of {limj}1≤i≤r,1≤j≤t is closed under
addition and multiplication. Note that T is also a vector space over F of dimension at most rt. If 0 ̸= u ∈ T ,
then 1, u2, . . . , urt are linearly independent over F . Let a0 + a1u+ · · ·+ acu

c = 0 be a shortest dependence
relation. Then a0 ̸= 0, so we may divide by a0 to obtain a relation 1 + a′1u + · · · + a′cu

c = 0, with each
a′j ∈ F . It follows that u(−a1 − · · · − acu

c−1) = 1. Since −a1 − · · · − acuc−1 ∈ T , this shows that T is
closed under taking multiplicative inverses. Thus, T is a subfield of K. Since T contains L and M , we have
LM ⊆ T ⊆ LM , and thus T = LM , showing that [LM : F ] is finite.

For (iii), suppose [L : F ] = r and [M : F ] = t, with r and t relatively prime. Then by part (i), [LM : F ] < ∞.
We have

[LM : F ] = [LM : L] · [L : F ] = [LM : L] · r and [LM : F ] = [LM : M ] · [M : F ] = [LM : M ] · t.

Since r and t are relatively prime, r divides [LM : M ], so that [LM : F ] = [LM : M ] · t ≥ rt. But part (ii)
shows that [LM : F ] ≤ rt, which gives [LM : F ] = rt, which is what we want.

4. For f(x) = x3 + x + 1 and g(x) = x4 + 3x2 + x + 7 in Q[x], find rational polynomials a(x), b(x) ∈ Q[x]
such that 1 = a(x)f(x) + b(x)g(x).

Solution. The first step is to use the Euclidean algorithm to find, the GCD, i.e., the last non-zero remainder
upon repeated applications of the division algorithm. This leads to:

g(x) = xf(x) + (2x2 + 7)

f(x) =
x

2
(2x2 + 7) + (−5

2
x+ 1)

2x2 + 7 = −(
4

5
x+

8

25
)(−5

2
x+ 1) +

183

25
.

Recalling that GCDS are unique up to units, we see that 1 is the GCD of f(x) and g(x). We use backwards
substitution with the equations above to solve for 183

25 in terms of f(x) and g(x).

183

25
= 1 · (2x2 + 7) + (

4

5
x+

8

25
)(−5

2
x+ 1)

183

25
= 1 · (2x2 + 7) + (

4

5
x+

8

25
)(f(x)− x

2
(2x2 + 7))

183

25
= (

4

5
x+

8

25
)f(x) + (1− 2

5
x2 − 4

25
x)(2x2 + 7)

183

25
= (

4

5
x+

8

25
)f(x) + (1− 2

5
x2 − 4

25
x)(g(x)− xf(x))

183

25
= (

8

25
− 1

5
x+

4

25
x2 +

2

5
x3)f(x) + (1− 2

5
x2 − 4

25
x)g(x).

Multiplying the last equation by 25
183 , we obtain

a(x) =
8

183
− 5

183
x+

4

183
x2 +

10

183
x3 and b(x) =

25

183
− 10

183
x2 − 4

183
x.

5. Prove that g(x) from the previous problem is irreducible over Q. Then, let α ∈ C be a root of g(x). For
f(x) as in 2, find f(α)−1 as an element of Q(α), written in terms of the basis 1, α, α2, α3. Similarly, find
f(α)h(α) as an element of Q(α), written in terms of the basis, for h(x) = x3 + 4x2 + x.

Solution. Note that g(x) is a primitive polynomial, thus, by Gauss’s Lemma, to see that g(x) is irreducible
over Q, it suffices to see that g(x) is irreducible over Z. By the Rational Root Test, g(x) does not have a root
in Q, so g(x) does not factor as a product of a linear polynomial and a cubic polynomial with coefficients in
Z. Suppose g(x) = (x2 + a1x + a0)(x

2 + b1x + b0), with each ai, bi ∈ Z. This single equation in Z[x] gives
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rise to the system of equations over Z
a1 + b1 = 0

a1b1 + a0 + b0 = 3

a0b1 + a1b0 = 1

a0b0 = 7.

I will leave it to you to verify that this system of equations has no solutions over Z, which implies that g(x)
is irreducible over Z.

To find f(α)−1, upon substituting α in the the last displayed equation above in problem 3 involving 183
25 ,

we see that

f(α)−1 = a(α) =
8

183
− 5

183
α+

4

183
α2 +

10

183
α3.

Moreover, one calculates f(x)h(x) = (x2 + 4x − 1)g(x) + (−8x3 − 3x2 − 26x + 7), so writing f(α)g(α) in
terms of the basis for Q(α) over Q we get f(α)h(α) = −8α3 − 3α2 − 26α+ 7.

6. Show that the degree of the minimal polynomial of
√
3 +

√
5 over Q is four. Use this to prove that

Q(
√
3,
√
5) = Q(

√
3 +

√
5). Find the minimal polynomial of

√
3 +

√
5 over Q.

Solution. We first note that [Q(
√
3,
√
5) : Q] = 4. This follows, since

√
5 ̸∈ Q(

√
3), the proof of which is

similar to the proof that
√
3 ̸∈ Q(

√
2) that we gave in class. Now, 1,

√
3,
√
5,
√
15 is a basis for for Q(

√
3,
√
5)

over Q. Set β :=
√
3 +

√
5 and multiply each basis element by β. This yields the set of equations

β · 1 = 0 · 1 + 1 ·
√
3 + 1 ·

√
5 + 0 ·

√
15

β ·
√
3 = 3 · 1 + 0 ·

√
3 + 0 ·

√
5 + 1 ·

√
15

β ·
√
5 = 5 · 1 + 0 ·

√
3 + 0 ·

√
5 + 1

√
15

β ·
√
15 = 0 · 1 + 5 ·

√
3 + 3 ·

√
3 + 0 ·

√
15.

As we saw in class, this yields the matrix equation

A ·


1√
3√
5√
15

 =


0
0
0
0

 ,

where A =


−β 1 1 0
3 −β 0 1
5 0 −β 1
0 5 3 −β

. The determinant of A equals zero, so β4 − 16β2 + 4 = 0, i.e., β is

a root of f(x) = x4 − 16x2 + 4. If we show that f(x) is irreducible over Q, then it will be the minimal
polynomial of β over Q. One way to do this is as follows: We set y = x2 and define a ring homomorphism
ϕ : Q[x] → Q[y], by ϕ(g(x)) = g(y) = g(x2), for all g(x) in Q[x]. It is straightforward to check that ϕ is
an isomorphism of rings. It follows that for g(x) ∈ Q[x], g(x) is irreducible over Q if and only if ϕ(g(x)) is
irreducible over Q. Since y2−16y+4 is irreducible over Q, it follows that f(x) is irreducible over Q, which is
what we want. Alternately, we can use Gauss’s Lemma as in the previous problem (since f(x) is a primitive
polynomial). Suppose f(x) = g(x)h(x) with g(x), h(x) ∈ Z[x]. If one of g(x), h(x) has degree one, then f(x)
has a root in Q, but the Rational Root Test fails for f(x), so such a factorization fails for f(x). Suppose
g(x) = x2 + a1x+ a0 and h(x) = x2 + b1x+ b0 belong to Z[x]. Then the equation f(x) = g(x)h(x) in Z[x]
yields the following system of equations over Z:

a1 + b1 = 0

a1b1 + a0 + b0 = −16

a0b1 + a1b0 = 0

a0b0 = 4.
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I leave it to you to check that this system has no solutions over Z. Thus f(x) is irreducible over Z, and
so f(x) is the minimal polynomial of

√
3 +

√
5 over Q. Thus Q(

√
3 +

√
5) has degree 4 over Q and since

Q(
√
3 +

√
5) ⊆ Q(

√
3,
√
5) these fields must be equal.

7. Prove the following generalization of Part (iv) in Proposition 2.1. Let σ : F → F0 be an isomorphism
of fields. Let F ⊆ K and F0 ⊆ K0 be field extensions. Let f(x) ∈ F [x] be irreducible over F , so that
f0(x) := fσ(x) is irreducible over F0. Here fσ(x) denotes the polynomial in F0[x] obtained by applying σ
to the coefficients of f(x). Finally, let α ∈ K be a root of f(x) and α0 ∈ K0 be a root of f0(x). Prove that
there exists τ : F (α) → F0(α0) an isomorphism of fields extending σ. We will see that this is a key method
in calculating the Galois group of a finite extension.

Solution. The proof is quite similar to the proof given in Proposition 2.1. The point is that the field structure
of F (α) is determined by the arithmetic in F [x] upon division by f(x), while the field structure of F0(α0)
is determined by the arithmetic in F0[x] upon division by f0(x), and since the rings F [x] and F0[x] are
isomorphic and f0(x) corresponds to f(x) under this isomorphism, we expect the fields F (α) and F0(α) to
be isomorphic.

Let us continue to use hσ(x) to denote the polynomial in F0[x] obtained by applying σ to the coefficients of
h(x), for any h(x) ∈ F [x]. I leave it to you to check that ϕ : F [x] → F0[x] defined by ϕ(h(x)) = hσ(x) is an
isomorphism of rings. Assume that f(x) and f0(x) each have degree d. For A ∈ F (α), A = a0+· · ·+ad−1α

d−1,
we define

τ(A) := σ(a0) + · · ·+ σ(ad−1)α
d−1
0 .

As before, we let A(x) be the polynomial in F [x] corresponding to A, so that A = A(α). Similarly, for
B = b0+· · ·+bd−1α

d−1 in F (α), we let B(x) denote the corresponding polynomial in F [x], so that B = B(α).
Now,

τ(A+B) = τ((a0 + b0) + · · ·+ (ad−1 + bd−1)α
d−1)

= σ(a0 + b0) + · · ·+ σ(ad−1 + bd−1)α
d−1
0

= σ(a0) + σ(b0) + · · ·+ (σ(ad−1) + σ(bd−1))α
d−1
0

= {σ(a0) + · · ·+ σ(ad−1)α
d−1
0 }+ {σ(b0) + · · ·+ σ(bd−1)α

d−1
0 }

= τ(A) + τ(B).

Now suppose A(x)B(x) = f(x)h(x) + r(x), where r(x) has degree less than d. Then, applying the ring
isomorphism ϕ to this equation yields Aσ(x)Bσ(x) = f0(x)h

σ(x)+ rσ(x). So, in F (α), we have A ·B = r(α),
from which it follows that τ(A ·B) = rσ(α0). On the other hand, τ(A) = Aσ(α0) and τ(B) = Bσ(α0). Since
Aσ(x)Bσ(x) = f0(x)h

σ(x) + rσ(x), it follows that τ(A) · τ(B) = rσ(α0), so τ(A ·B) = τ(A) · τ(B). Thus, τ
is a field homomorphism. Since field homomorphisms are always one-to-one, and ϕ is surjective, it is easy
to see that τ is also surjective, and thus τ is an isomorphism from F (α) to F (α0) extending σ.

8. Let F be a field and f(x) ∈ F [x]. Write f ′(x) for the formal derivative of f(x) and assume f ′(x) ̸= 0.

(i) Prove that f(x) has a repeated root (possibly in a larger field) if and only if f ′(x) = 0 or f(x) and
f ′(x) have a common factor in F [x]. Recall α is a repeated root of f(x) iff (x − α)2 is a factor of
f(x) over the splitting field of f(x). Hint: f ′(x) = 0 can only occur if F has characteristic p > 0.

(ii) Prove that if f ′(x) = 0, then every root is a repeated root.

Solution. For part (i), suppose f(x) has a repeated root (possibly in F ). Then f(x) = (x − a)2g(x), for
some a ∈ F and g(x) ∈ F [x]. This gives f ′(x) = 2(x − a)g(x) + (x − a)2g′(x), so f ′(a) = 0. Suppose
f ′(x) ̸= 0. If f(x) and f ′(x) have no common factor in F [x], then we may write 1 = g(x)f(x) + h(x)f ′(x),
with g(x), h(x) ∈ F [x]. Setting x = a yields 0 = 1, a contradiction Thus, f(x) and f ′(x) have a common
factor.

Conversely, suppose f ′(x) = 0. Write f(x) = (x− α1) · · · (x− αn) over F . Then

0 = f ′(x) = Πi ̸=1(x− αi) + · · ·+Πi ̸=n(x− αi).

All of the terms Πi̸=j(x−αi) with j ̸= 1 in the sum above are divisible by x−α1, so the first terms is divisible
by x− α1. By the UFD property of F [x], we must have x− α1 = x− αi, for some i ̸= 1. Thus, α1 = αi, so
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that f(x) has repeated root. Now suppose f ′(x) ̸= 0 and f(x) and f ′(x) have a common factor. Then, they
have a common irreducible factor p(x) ∈ F [x]. Write f(x) = p(x)g(x). Then f ′(x) = p′(x)g(x) + p(x)g′(x).
If p′(x) ̸= 0, then, since p(x) divides f ′(x), it divides p′(x)g(x). Therefore, p(x) must divide g(x). We can
now write f(x) = p(x)2g0(x), for some g0(x) ∈ F [x]. Thus, any root of p(x) is a repeated root of f(x). If
p′(x) = 0, then as we have just seen, p(x) has a repeated root, and therefore f(x) also has a repeated root.

For part (ii), suppose f ′(x) = 0 and α ∈ F is a root of f(x). Then we can write f(x) = (x − α)g(x) as
elements of F [x]. We then have

0 = f ′(x) = g(x) + (x− α)g′(x).

If we set x = α, it follows that g(α) = 0, which shows that α is a repeated root of f(x).

9. Let f(x) be an irreducible polynomial with coefficients in Q. Prove that f(x) has distinct roots in its
splitting field over Q. Does the same conclusion hold if f(x) is an irreducible polynomial with coefficients in
Zp, p > 0, a prime? Prove this, or give a counter-example.

Solution. If f(x) ∈ Q[x], then f ′(x) ̸= 0, and moreover, if f(x) is irreducible, then f(x) and f ′(x) cannot
have a common factor. Thus, by the previous problem, f(x) has distinct roots. Now suppose f(x) ∈ Zp[x] is
irreducible. If f ′(x) ̸= 0, then since f(x) is irreducible, f(x) and f ′(x) have no common factor, and thus, by

the previous problem, f(x) has distinct roots. Suppose f ′(x) = 0. Then, when we write f(x) =
∑d

i=0 aix
i,

with ai ∈ Zp, ai ̸= 0 if and only if p divides i. So, we can rewrite f(x) as
∑r

j=0 apjx
pj , where d = pr. Now,

by Euler’s theorem, ajp = apjp, for all j, so that

f(x) =

r∑
j=0

apjx
pj =

r∑
j=0

appjx
pj = (

r∑
j=0

apjx
j)p,

which contradicts the irreducibility of f(x). Therefore, when F = Zp, we cannot have f ′(x) = 0, when f(x)
is irreducible over F . Thus, f(x) has distinct roots. Consequently, every finite extension of Zp is a separable
extension.

10. Let F be a field and F (x) the rational function field in one variable over F , i.e., the field consisting of
all fractions f(x)/g(x), with f(x), g(x) ∈ F [x], g(x) ̸= 0. Let K be a field satisfying F ⊂ K ⊆ F (x) and
assume K = F (f/g), for some f/g ∈ F (x)\F , with f(x) and g(x) relatively prime. Show that [F (x) : K] is
the maximum of the degrees of f(x) and g(x). Conclude that [F (x) : K] < ∞, for any F ⊂ K ⊆ F (x).

Solution. Let t be an indeterminate over K (so that x, t are independent variables over F ). If f(x) has
degree greater than the degree of g(x), set h(t) := f(t) − (f(x)/g(x))g(t), so that h(t) ∈ K[t] and the
degree of h(t) equals the degree of f(x). Since we may assume that f(x) is monic, as replacing f(x) by the
polynomial obtained by dividing f(x) by its leading coefficient does not change K, h(t) is a monic polynomial
in K[t] whose degree is the maximum of the degrees of f(x) and g(x). Suppose the degree of g(x) is greater
than or equal to the degree of f(x). If f(x) and g(x) have the same degree, the division algorithm gives
f(x) = g(x)+ r(x), where r(x) has degree less than the degree of g(x). But then, f(x)/g(x) = 1+ r(x)/g(x)
and K = F (r(x)/g(x)), so we may relabel r(x) as f(x) and assume the degree of g(x) is strictly greater than
the degree of f(x). In this case we take, h(t) = g(t) − (g(x)/f(x))f(t), and assume that g(x) is monic, so
that again, h(t) is a monic polynomial in K[t] whose degree is the maximum of the degrees of f(x) and g(x).
Without loss of generality, we assume that we are in the first case. Then, we have that h(x) = 0, so that
x is algebraic over K. Since F (x) = K(x), this shows that [F (x) : K] < ∞. To see that [F (x) : K] equals
the maximum of the degrees of f(x) and g(x), namely, the degree of f(x), it suffices to show that h(t) is
irreducible as an element of K[t].

Since f(x)/g(x) is not algebraic over F , we can think of f(x)/g(x) as a variable over F , so for ease of
notation, we set u := f(x)/g(x). Therefore, h(t) ∈ F (u)[t], where F (u) is the rational function field in u over
F , i.e., the quotient field of the polynomial ring F [u]. In this new notation, h(t) = f(t)− ug(t), which also
belongs to the polynomial ring F [u, t] in two variables over F . Now, as a polynomial in t, with coefficients
in F [u], h(t) is a primitive polynomial, so by Gauss’s lemma, it is irreducible as an element of F (u)[t], if it
is irreducible as an element of F [t, u]. We can also regard h(t) as a polynomial in u with coefficients in F [t].
Since f(t), g(t) have no common factor, h(t) is irreducible as as element of F [t, u], since it has degree one as
a polynomial in u, which gives what we want.
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